Concrete Masonry Association AustraliaPO Box 370,P: 02 8448 5500ArtarmonF: 02 9411 3801NSW 1570www.cmaa.com.au

MARCH 2013

Compressive Load Capacity of Concrete Masonry

This data sheet has been prepared by the Concrete Masonry Association of Australia for use by qualified and experienced structural engineers. The information is based on limit state design and is applicable specifically to concrete masonry with properties as set out in Clause 1 and loads set out in Clause 2.

1 Masonry Properties

The design tables are based on masonry components with the following properties:

- Masonry units having a characteristic unconfined compressive strength (f'_{uc}), for units with faceshell bed, of 15.0 MPa and for units with fullbedding, of 10 MPa when tested in accordance with AS/NZS 4456.4.
- Mortar is of type M3 (or refer Table 5.1 AS 3700 if required for durability) ie, for type M3, either a C1:L1:S6 mix or a C1:S5 mix plus *methyl cellulose* water thickener or equivalent.
- Grout is to have a characteristic cylinder compressive strength (f'_c) of 20.0 MPa. Note the maximum value of grout strength (f'_{cg}) used for design is 1.3 times f'_{uc} ie, 1.3 x 15.0 = 19.5 MPa. Where possible pre-mixed grout should be used and, when ordering, specified that it is for grouting blockwork incorporating reinforcement; a minimum cement content of 300 kg/m³ is required. If the grout is to be site-mixed, it should be mixed in a tilting drum paddle mixer and must flow freely without separation of the aggregate. The aggregate should be rounded gravel where available and preferably 5 mm to 10 mm in size. The following proportions should be used:

Cement	1 part
Hydrated lime	up to 1/10 part
Mortar sand	3 parts
Aggregate	2 parts

Reinforcement is to be N-grade with a yield strength (f_{sv}) of 500 MPa.

2 Design Basis

The loads, load combinations and load factors are in accordance with:

- AS/NZS 1170.0 General Principles
- AS/NZS 1170.1 Permanent, imposed and other actions
- AS/NZS 1170.2 Wind actions.

The design properties and strength-reduction factors are in accordance with AS 3700 *Masonry structures*.

3 Compressive Load Capacity

The compressive load capacity (Table 1) has been derived using slenderness reduction factors given in Australian Standard AS 3700 2011, Clause 7.3.3 *Design by simple rules*. Slenderness-reduction factors for three load conditions have been used to generate the load capacities in Table 1 for various wall types and heights.

The values are all based on walls being unreinforced in compression. These also apply to walls containing reinforcement that is not effectively restrained in both directions. If the reinforcement can be effectively tied in both directions then there will be an increase in load capacity, not only from the reinforcement, but also from an increase in the value of ϕ .

Table 1 gives values of:

=

- $h_u = height of unit (from which the value of k_h is determined)$
- $A_b = bedded area of masonry unit (m²/m)$
- f'mb= basic characteristic compressive strength of masonry for a ratio of masonry unit height to motar joint thickness of 7.6
- k_h = compressive strength factor from Table 3.2 of AS 3700 for a ratio of masonry unit height to motar joint thickness for other than 7.6
- f'_m = characteristic compressive strength of masonry (MPa)

 F_o = basic compressive capacity (kN/m) = $\phi f'_m A_b$ for ungrouted walls *cl 7.3.2(1)*

$$\phi \left[f'_{m} A_{b} + k_{c} \sqrt{\frac{f'_{cg}}{1.3}} A_{c} \right] \text{ for grouted walls} \\ \frac{cl}{r} 7.3.2(2)$$

Where: $\phi = 0.5$ Hollow including grouted *T4.1* = 0.75 Solid or Cored *T4.1* $k_c = 1.4$ for masonry density > 2000 kg/m³

f'_{cg}= 19.5 Mpa

- F_d = maximum design compressive strength (kN/m) = k F_o
 - Where: k = reduction factor for slenderness and eccentricity from *Table 7.1 of AS 3700*.

Disclaimer: The Concrete Masonry Association of Australia Limited is a non-profit organisation sponsored by the concrete masonry industry in Australia to provide information on the many uses of concrete masonry products. Since the information provided is intended for general guidance only and in no way replaces the service of professional consultants on particular projects, no liability can be accepted by the Association for its use.

Remember, when working with cement and concrete/mortar or manufactured or prefabricated concrete products, ALWAYS follow the manufacturer's instructions and seek advice about working safely with the products from the manufacturer, your nearest WorkCover Authority or Worksafe Australia.

.

201

March

TABLE 1 Wall Properties and Compressive Load Capacity

WALL PROPERTIES

	Wall th	ickness,	t _w (mm)							
	90 Unit ty	110 pe			140			190		290	
Property	10.01	Brick	Doubl brick	e 12.01	15.01	15.01 grouted	15.801	20.01	20.01 grouted	30.925	30.925 grouted
¢	0.5	0.75	0.75	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
h _u <i>(mm)</i>	190	76	162	190	190	190	190	190	190	190	190
A _b (<i>m²/m</i>)	0.050	0.110	0.110	0.070	0.056	-	0.084	0.060	-	0.076	-
f' _{uc} <i>(MPa)</i>	15	10	10	15	15	15	15	15	15	15	15
f' _{mb} (MPa)	6.20	4.43	4.43	6.20	6.20	6.20	6.20	6.20	6.20	6.20	6.20
k _b	1.30	1.00	1.24	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
f' _m <i>(MPa)</i>	8.06	4.43	5.49	8.06	8.06	8.06	8.06	8.06	8.06	8.06	8.06
F _o (kN/m)	201	365	454	282	225	453	339	242	594	306	886

WALL COMPRESSIVE LOAD CAPACITY, F_d (kN/m)

		Wall thi	ickness,	t _w (mm)							
Wall	Wall design	90 Unit tyj	110 pe			140			190		290	
loading condition	height, H (mm)	10.01	Brick	Doubl brick	e 12.01	15.01	15.01 grouted	15.801	20.01	20.01 grouted	30.925	30.925 grouted
Concrete slab on wall	2400	84	185	231	143	137	276	205	162	397	205	593
	2700	70	171	213	132	128	255	191	162	397	205	593
s <u>a a</u> da a <u>a</u> .	3000	-	149	186	115	119	236	176	153	376	205	593
	3300	-	127	159	98	110	216	162	145	357	205	593
	3600	-	-	-	-	96	197	147	137	338	205	593
	4200	-	-	-	-	78	158	118	122	302	202	585
	4800	-	-	-	-	-	-	-	107	264	189	548
	5400	-	-	-	-	-	-	-	92	226	176	512
Other loads on wall	6000	-	-	-	-	-	-	-	76	188	165	475
1	2400	51	138	173	105	111	222	166	145	3583	205	593
	2700	34	120	150	86	98	198	147	136	335	205	593
	3000	-	92	116	66	86	174	130	126	312	202	580
	3300	-	66	92	47	74	150	112	117	288	194	563
	3600	-	-	-	-	62	125	93	107	265	186	540
	4200	-	-	-	-	38	76	57	88	217	171	494
	4800	-	-	-	-	-	-	-	70	171	154	448
	5400	-	-	-	-	-	-	-	51	120	138	403
Load on side of wall	6000	-	-	-	-	-	-	-	31	77	123	356
	2400	-	-	-	-	13	27	21	16	40	20	58
1 storey	2700	-	-	-	-	12	25	18	15	40	20	58
	3000	-	-	-	-	12	23	17	15	37	20	58
	3300	-	-	-	-	11	22	16	14	35	20	58
	3600	-	-	-	-	10	20	14	13	34	20	58
1/10 minimum	4200	-	-	-	-	-	-	-	12	30	20	58
	4800	-	-	-	-	-	-	-	11	26	18	54
	5400	-	-	-	-	-	-	-	-	-	17	51
	6000	_	_	_	_	_	_	_	_	_	16	47

4 Worked Example

The purpose of the following worked example is to demonstrate the steps to be followed when performing manual calculations or when preparing computer software for the analysis and design of masonry.

The worked example is not intended to analyse or design all parts of the particular structure. It deals only with enough to demonstrate the design method.

MARCH 2013

DATA SHEFTE

Cha	aracteristic confined masonry	strength	DESIGN BY SIMPLIFIED R	ULES 7.3.3
	$f'_{mb} = k_m \sqrt{f'_{uc}}$	3.3.2(a)(i)		
	= 1.6 \[15		Vertical slenderness coefficier	nt (supports slab)
	= 6.20 MPa		$a_v = 1.0$	7.3.3.4(1)
Cha	aracteristic unconfined mason	y strength	Clear height	
	$f'_m = k_h f'_{mb}$	3.3.2(a)(i)	H = 2.70 m	
	$= 1.3 \times 6.20$			
	= 8.06 MPa		Clear length	
			L = 3.70 m	
NO	TE: This wall is not grouted.	Where grout		
is u	sed elsewhere, it is specified a	IS:	Thickness coefficient (no	engaged piers)
			$k_{t} = 1.0$	Table 7.2
Cha	tracteristic grout cylinder strer	ngth		
	f' _c = 20 MPa		Slenderness ratio	
	> 12 MPa	11.7.3	a, H	7.3.3.4(1)
			$S_{rs} = \frac{1}{k_t t}$	
Des	ign characteristic grout streng	th 🛛 🔹	1.0 x 2700	
	$f'_{cg} = 1.3 f'_{uc}$		$=\frac{1.0 \times 90}{1.0 \times 90}$	
	= 1.3 x 15		= 30.0	
	= 19.5 MPa		Slenderness and eccentricity f	factor
	< 20 MPa	3.5	$k = 0.67 - 0.02 (S_{rc} - 14)$	7.3.3.3(a)(i)
			= 0.67 - 0.02 (30.0 - 14)	, 10 10 10 (0,)(1)
Cap	pacity reduction factor		= 0.35	or from Table 7.1
	ø = 0.5	Table 4.1		<i>J</i> .
			Design capacity	
Den	sity factor		$F_d = k F_0$	7.3.3.2
	$k_c = 1.4$ for density 2180		$= 0.35 \times 201$	
	> 2000 kg/m ³	7.3.2	= 70.4 kN/m	
Bas	ic compressive capacity	7.3.2(2)	NOTE: If design capacity al	bove is not
	$\mathbf{F} = \mathbf{a} \begin{bmatrix} \mathbf{f}' & \mathbf{h} \end{bmatrix} \mathbf{b} \begin{bmatrix} \mathbf{f}'_{cg} \end{bmatrix} \mathbf{A}$		sufficient to meet actual des	ign loads.
	$\Gamma_0 = \emptyset \prod_{m} A_b + K_c / (\frac{1.3}{1.3}) A_b$	2	higher compressive capacity	v mav he
	0.5 (8.06 x 50,000)	1 (19.5)	achieved using the Refined	Calculation
		$1.4 \left(\frac{1.3}{1.3} \right) \times 0$	method. Refer to 7.3.4	
	= 201 kN/m			
+				
-				

DATA SHEETE